58 research outputs found

    On the Nature of the Peculiar Hot Star in the Young LMC Cluster NGC1818

    Full text link
    The blue star reported in the field of the young LMC cluster NGC1818 by Elson et al. (1998) has the wrong luminosity and radius to be a "luminous white dwarf" member of the cluster. In addition, unless the effective temperature quoted by the authors is a drastic underestimate, the luminosity is much too low for it to be a cluster member in the post-AGB phase. Other possibilities, including that of binary evolution, are briefly discussed. However, the implication that the massive main sequence turnoff stars in this cluster can produce white dwarfs (instead of neutron stars) from single-star evolution needs to be reconsidered.Comment: 5 pages, no figures, Ap J Letters in pres

    Synthetic post-Asymptotic Giant Branch evolution: basic models and applications to disk populations

    Get PDF
    We explore the realm of post-Asymptotic Giant Branch (post-AGB) stars from a theoretical viewpoint, by constructing synthetic population of transition objects, proto-Planetary Nebulae, Planetary Nebulae Nuclei, and post-Planetary Nebulae objects. We use the Montecarlo procedure to filter out the populations accordingly to a given set of assumptions. We explore the parameter space by studying the effects of the Initial Mass Function (IMF), the Initial Mass-Final Mass Relation (IMFMR), the transition time (t_tr), the envelope mass at the end of the envelope ejection (Me_r), the planetary nebula lifetime t_PN, the hydrogen- and helium-burning phases of the central stars. The results are discussed on the basis of the HR diagram distributions, on the Mv-t plane, and with mass histograms. We found that: (1) the dependence of the synthetic populations on the assumed IMF and IMFMR is generally mild; (2) the Me_r indetermination produces very high indeterminations on the t_tr and thus on the resulting post-AGB populations; (3) the synthetic models give a test check for the ratio of He- to H-burning PNNi. In this paper, disk post-AGB populations are considered. Future applications will include Magellanic Clouds PNe, and populations of bulges and elliptical galaxies.Comment: 2 tables, 27 figures (gif format) The Astrophysical Journal, accepte

    Defining the Termination of the Asymptotic Giant Branch

    Full text link
    I suggest a theoretical quantitative definition for the termination of the asymptotic giant branch (AGB) phase and the beginning of the post-AGB phase. I suggest that the transition will be taken to occur when the ratio of the dynamical time scale to the the envelope thermal time scale, Q, reaches its maximum value. Time average values are used for the different quantities, as the criterion does not refer to the short time-scale variations occurring on the AGB and post-AGB, e.g., thermal pulses (helium shell flashes) and magnetic activity. Along the entire AGB the value of Q increases, even when the star starts to contract. Only when a rapid contraction starts does the value of Q start to decrease. This criterion captures the essence of the transition from the AGB to the post AGB phase, because Q is connected to the stellar effective temperature, reaching its maximum value at T~4000-6000 K, it is related to the mass loss properties, and it reaches its maximum value when rapid contraction starts and envelope mass is very low.Comment: Submitted to ApJ Letter

    The evolutionary time scale of Sakurai's object: A test of convection theory?

    Get PDF
    Sakurai's object (V4334 Sgr) is a born again AGB star following a very late thermal pulse. So far no stellar evolution models have been able to explain the extremely fast evolution of this star, which has taken it from the pre-white dwarf stage to its current appearance as a giant within only a few years. A very high stellar mass can be ruled out as the cause of the fast evolution. Instead the evolution time scale is reproduced in stellar models by making the assumption that the efficiency for element mixing in the He-flash convection zone during the very late thermal pulse is smaller than predicted by the mixing-length theory. As a result the main energy generation from fast proton capture occurs closer to the surface and the expansion to the giant state is accelerated to a few years. Assuming a mass of V4334 Sgr of 0.604Msun -- which is consistent with a distance of 4kpc -- a reduction of the mixing length theory mixing efficiency by a factor of ~ 100 is required to match its evolutionary time scale. This value decreases if V4334 Sgr has a smaller mass and accordingly a smaller distance. However, the effect does not disappear for the smallest possible masses. These findings may present a semi-empirical constraint on the element mixing in convective zones of the stellar interior.Comment: 16 pages, 3 figures, ApJ Letter, in press; some additional information as well as modifications as a result of the refereeing process, improved layout of prev. Fig.1 (now Fig.1 and Fig.2

    On the Origin of X-ray Emission From Millisecond Pulsars in 47 Tuc

    Get PDF
    The observed spectra and X-ray luminosities of millisecond pulsars in 47 Tuc can be interpreted in the context of theoretical models based on strong, small scale multipole fields on the neutron star surface. For multipole fields that are relatively strong as compared to the large scale dipole field, the emitted X-rays are thermal and likely result from polar cap heating associated with the return current from the polar gap. On the other hand, for weak multipole fields, the emission is nonthermal and results from synchrotron radiation of e±e^{\pm} pairs created by curvature radiation. The X-ray luminosity, LxL_x, is related to the spin down power, LsdL_{sd}, expressed in the form LxLsdβL_x \propto L^{\beta}_{sd} with β0.5\beta \sim 0.5 and 1\sim 1 for strong and weak multipole fields respectively. If the polar cap size is of the order of the length scale of the multipole field, ss and β0.5\beta \sim 0.5, the polar cap temperature is 3×106K(Lsd1034ergs1)1/8(s3×104cm)1/2\sim 3 \times 10^6 K (\frac{L_{sd}}{10^{34}erg s^{-1}})^{1/8} (\frac{s}{3\times 10^4 cm})^{-1/2}. A comparison of the X-ray properties of millisecond pulsars in globular clusters and in the Galactic field suggests that the emergence of relatively strong small scale multipole fields from the neutron star interior may be correlated with the age and evolutionary history of the underlying neutron star.Comment: 25 pages, 2 figures, accepted for publication in Ap

    An analysis of ultraviolet spectra of Extreme Helium Stars and new clues to their origins

    Full text link
    Abundances of about 18 elements including the heavy elements Y and Zr are determined from Hubble Space Telescope Space Telescope Imaging Spectrograph ultraviolet spectra of seven extreme helium stars (EHes): LSE 78, BD+10 2179, V1920 Cyg, HD 124448, PV Tel, LS IV -1 2, and FQ Aqr. New optical spectra of the three stars -- BD+10 2179, V1920 Cyg, and HD 124448 were analysed. The abundance analyses is done using LTE line formation and LTE model atmospheres especially constructed for these EHe stars. The stellar parameters derived from an EHe's UV spectrum are in satisfactory agreement with those derived from its optical spectrum. Adopted abundances for the seven EHes are from a combination of the UV and optical analyses. Published results for an additional ten EHes provide abundances obtained in a nearly uniform manner for a total of 17 EHes, the largest sample on record. The initial metallicity of an EHe is indicated by the abundance of elements from Al to Ni; Fe is adopted to be the representative of initial metallicity. Iron abundances range from approximately solar to about one-hundredth of solar. Clues to EHe evolution are contained within the H, He, C, N, O, Y, and Zr abundances. Two novel results are (i) the O abundance for some stars is close to the predicted initial abundance yet the N abundance indicates almost complete conversion of initial C, N, and O to N by the CNO-cycles; (ii) three of the seven stars with UV spectra show a strong enhancement of Y and Zr attributable to an s-process. The observed compositions are discussed in light of expectations from accretion of a He white dwarf by a CO white dwarf.Comment: 126 pages, 15 figures, 20 Tables, accepted for publication in the Ap

    The N Enrichment and Supernova Ejection of the Runaway Microquasar LS 5039

    Get PDF
    We present an investigation of new optical and ultraviolet spectra of the mass donor star in the massive X-ray binary LS 5039. The optical band spectral line strengths indicate that the atmosphere is N-rich and C-poor, and we classify the stellar spectrum as type ON6.5 V((f)). The N-strong and C-weak pattern is also found in the stellar wind P Cygni lines of N V 1240 and C IV 1550. We suggest that the N-enrichment may result from internal mixing if the O-star was born as a rapid rotator, or the O-star may have accreted N-rich gas prior to a common-envelope interaction with the progenitor of the supernova. We re-evaluated the orbital elements to find an orbital period of P=4.4267 +/- 0.0010 d. We compared the spectral line profiles with new non-LTE, line-blanketed model spectra, from which we derive an effective temperature T_eff = 37.5 +/- 1.7 kK, gravity log g = 4.0 +/- 0.1, and projected rotational velocity V sin i = 140 +/- 8 km/s. We fit the UV, optical, and IR flux distribution using a model spectrum and extinction law with parameters E(B-V)= 1.28 +/- 0.02 and R= 3.18 +/- 0.07. We confirm the co-variability of the observed X-ray flux and stellar wind mass loss rate derived from the H-alpha profile, which supports the wind accretion scenario for the X-ray production in LS 5039. Wind accretion models indicate that the compact companion has a mass M_X/M_sun = 1.4 +/- 0.4, consistent with its identification as a neutron star. The observed eccentricity and runaway velocity of the binary can only be reconciled if the neutron star received a modest kick velocity due to a slight asymmetry in the supernova explosion (during which >5 solar masses was ejected).Comment: 38 pages, 9 figures; 2004, ApJ, 600, Jan. 10 issue, in press Discussion revised thanks to comments from P. Podsiadlowsk

    Formation and evolution of a 0.242 Msun helium white dwarf in presence of element diffusion

    Full text link
    A 0.242 Msun object that finally becomes a helium white dwarf is evolved from Roche lobe detachment down to very low luminosities. In doing so, we employ our stellar code to which we have added a set of routines that compute the effects due to gravitational settling, and chemical and thermal diffusion. Initial model is constructed by abstracting mass to a 1 Msun red giant branch model up to the moment at which the model begins to evolve bluewards. We find that element diffusion introduces noticeable changes in the internal structure of the star. In particular, models undergo three thermonuclear flashes instead of one flash as we found with the standard treatment. This fact has a large impact on the total mass fraction of hydrogen left in the star at entering the final cooling track. As a result, at late stages of evolution models with diffusion are characterized by a much smaller nuclear energy release, and they evolve significantly faster compared to those found with the standard treatment. We find that models in which diffusion is considered predict evolutionary ages for the white dwarf companion to the millisecond pulsar PSR B1855+09 in good agreement with the spin-down age of the pulsar.Comment: 6 pages, 3 figures, 12th European Workshop on White Dwarf

    Optimization of Starburst99 for Intermediate-Age and Old Stellar Populations

    Full text link
    We have incorporated the latest release of the Padova models into the evolutionary synthesis code Starburst99. The Padova tracks were extended to include the full asymptotic giant branch (AGB) evolution until the final thermal pulse over the mass range 0.9 to 5 solar mass. With this addition, Starburst99 accounts for all stellar phases that contribute to the integrated light of a stellar population with arbitrary age from the extreme ultraviolet to the near-infrared. AGB stars are important for ages between 0.1 and 2 Gyr, with their contribution increasing at longer wavelengths. We investigate similarities and differences between the model predictions by the Geneva and the Padova tracks. The differences are particularly pronounced at ages > 1 Gyr, when incompleteness sets in for the Geneva models. We also perform detailed comparisons with the predictions of other major synthesis codes and found excellent agreement. Our synthesized optical colors are compared to observations of old, intermediate-age, and young populations. Excellent agreement is found for the old globular cluster system of NGC 5128 and for old and intermediate-age clusters in NGC 4038/39. In contrast, the models fail for red supergiant dominated populations with sub-solar abundances. This failure can be traced back to incorrect red supergiant parameters in the stellar evolutionary tracks. Our models and the synthesis code are publicly available as version 5.0 of Starburst99 at http://www.stsci.edu/science/starburst99/.Comment: The revised Starburst99 code discussed in this paper will replace the current version 4.0 on our Starburst99 website by December 31, 2004. Accepted for publication in ApJ; 39 pages, 23 figures, 5 table
    corecore